WROCŁAWSKA STRONA HELAS-a

Modele pulsacyjne dla gwiazd o masach od 1.6 do 20 MSun wyznaczone przy użyciu nieprzeźroczystości OP

J. Daszyńska-Daszkiewicz, P. Walczak, Instytut Astronomiczny, Uniwersytet Wrocławski

In all computations the OPAL equation of state were used.

Pobierz:

OPOP opacities (Seaton 2005)
A04Chemical Composition (Asplund 2004)
Xhydrogen abundance
Zheavy element abundance
ACMLT parameter (mixing-length theory); AC = alpha convective = lconv/Hp, where lconv - mixing length, Hp - local pressure scale height
AOconvective overshooting parameter; AO = alpha overshooting = dover/Hp, where dover - convective overshooting
Vinitial equatorial rotational velocity [km/s]


Stellar oscillations were calculated from ZAMS to TAMS. The oscillation files are called nad***.mrt, and are packed for each mass. The structure of these files is as follows:


first line:

M=... Teff=... logL=... R=... logg=... Vrot=...

where

Mthe stellar mass in solar units
TefflogTeff
logLlogL/L
Rthe stellar radius in solar units
logglogg

second line:

l n sig P[hrs] fa[c/d] fn[c/d] COMPLEX F ekg/ek eta

where

lthe spherical harmonic degree, l
nthe radial order, n
sig
the dimensionless frequency defined as sig=omega/sqrt(4*Pi*G*avr_ro)
P[hrs]oscillation period in [h]
fa[c/d]adiabatic oscillation frequency in [c/d]
fn[c/d]adiabatic oscillation frequency in [c/d]
COMPLEX F(two values) the ratio of the radiative flux perturbation to the radial displacement at the level of the photosphere
ekg/ekratio of the gravitational energy to the total kinetic energy; 0 for "pure" pressure modes, 1 for "pure" gravity modes
eta
instability parameter defined as η = sig=omega/sqrt(4*Pi*G*avr_ro)
where W is the work integral. For unstable modes we have η > 0. The values of the η parameter change from -1 (damping everywhere) to +1 (driving everywhere)
Webmaster: