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Pulsation is a common phenomenon in stars. It occurs in a wide range of

their masses and in all evolutionary phases, exhibiting large variety of forms.

Stochastic driving and just two distinct instability mechanisms are the cause

of the widespread phenomenon. The diversity of pulsation properties in stars

across the H-R diagram is partially explained in terms of differences in the

ranges of unstable modes and in terms nonlinear mechanisms of amplitude

limitation. Still a great deal remains to be explained.

1.1 Introduction

Excitation of the fundamental radial mode was the essence of the pulsation

hypothesis when it was first proposed by Ritter in 1879, as an explanation of

periodic variability in stars. Radial symmetry of the motion was confirmed

for a number of objects by means of observational tests. Excitation of the

same, presumably fundamental, mode in all δ Cephei type stars got sup-

port in the discovery of the period-luminosity relation, which at some point

seemed unique. Soon, the hypothesis that only the fundamental radial mode

may be excited became a dogma like the earlier one that stars do not vary.

Referring to Schwarzschild’s (1942) suggestion that RRc stars might be

first overtone pulsators, Rosseland (1949) wrote: This hypothesis involves

the very difficult problem of how to excite a higher mode to pulsation while

leaving the fundamental mode unexcited. Referring to Ledoux’s (1951) pro-

posal that nonradial modes are excited in β Canis Majoris stars, Chan-

drasekhar and Lebovitz (1962), though not questioning the claim, still had

this comment: ... one is generally reluctant to accept suggestions to appeal

directly to the excitation of non-radial modes (besides the radial modes) on

the grounds that such modes should be highly damped relative to radial modes
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and, further, that their excitation would be “difficult” in view of the possible

source of such excitation being deep in the interior.

Today we know that in many stars nonradial modes are excited by the

same mechanism as radial ones. In many others only the former are unsta-

ble. Firm evidence for overtone pulsation was found among most classical

pulsators such as Cepheids and RR Lyrae stars. In agreement with theo-

retical predictions, even second pulsators have been identified. The latter

finding is relatively new. It came as a by-product of massive photometric

surveys aimed at the detection of microlensing events.

Astronomers were aware of diversity in the form of stellar pulsation from

the very beginning of astrophysics. Baily introduced his division of RR

Lyrae stars into subtypes a, b, and c already in 1899. Eight years later

Blazkho discovered amplitude variations in one of the RRa stars. Not long

after, Hertzsprung described variations of the shape of light curves with

period in Cepheids. With the progress in observational methods we have

learned about a much larger variety of stellar pulsation. We only partially

understand how it comes about. Remarkably, we still do not have a fully

satisfactory model for the effect discovered by Blazkho.

1.2 Types of stellar pulsation

One natural division of pulsating stars is into stochastically driven pulsators

and unstable-mode pulsators. There are only few distant stars for which we

have information about stochastically excited modes. The pattern of mode

excitation is the same as in the sun. For the rest of present review I will be

concerned only with the latter type and I will subdivide it into giant-type

and dwarf-type.

1.2.1 Giant-type pulsators

It is only after data from massive photometric surveys became available

that we have a fair statistics of pulsational behaviour in classical pulsat-

ing stars. Table 1.1, which is based on data from Udalski et al. (1999)

and Udalski et al. (2000), gives the percentage of various types of pulsating

Cepheids in, respectively, the Small and Large Magellanic Clouds as deter-

mined from the OGLE II project. We see that the fundamental mode is

the most frequent choice but the first-overtone pulsators are common too.

Few pure second-overtone Cepheids are found and only in the SMC. Also

double-mode pulsators are very rare. These facts call for an interpretation.

No firm evidence as yet has been found for nonradial modes in Cepheid
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Table 1.1. Magellanic Cloud Cepheids pulsating in various modes

modes SMC (%) LMC(%)

fundamental 58.5 56.9
fund. + first ov. 1.2 1.4
first overtone 35.9 37.5
second + first ov. 3.6 4.2
second overtone 0.7 0

Fig. 1.1. Oscillation spectra for RR Lyrae stars. Data for the NGC 6362 stars
are from Olech et al. (2001) and those for AQ Leonis are from Jerzykiewicz &
Wentzel (1977). The two stars in the upper row are monomode pulsators. All
peaks shown there are at multiples of the pulsation frequencies, which is that of
the first overtone for V22 and the fundamental mode for V25. For V6 we see two
close side peaks causing Blazkho-type amplitude modulation. In AQ Leonis both
the fundamental and first overtone of radial pulsation are excited. The remaining
peaks are at various combinations of the two basic frequencies.

pulsation. However, a few cases of long-time amplitude and phase changes

were found and remain unexplained. In contrast, long-time modulations

are rather common among RR Lyrae stars. The first evidence for nonradial

mode excitation in RR Lyrae was found by Olech et al. (1999). The evidence

was based on frequency analysis of RR Lyrae light curves, which has revealed

the presence of closely spaced peaks. Subsequent analyses (see Kovács, 2002
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for a summary) performed on large samples of light curves added many new

objects with the same property.

Still the majority of RR Lyrae stars are apparently monoperiodic and

pulsating in the fundamental mode (RRab) or first overtone (RRc). The

upper panels of Figure 1.1 show examples of oscillation spectra for objects

of these two subtypes. The lower panels show the spectra of two types of

multiperiodic pulsation. In the left panel we see three closely and equally

spaced peaks, which certainly cannot be attributed to different radial modes.

The right panel shows the spectrum for AQ Leonis – the first discovered RRd

star, which is the adopted designation for objects with the fundamental and

first overtone simultaneously present.

Actually, V6 in NGC 6362 is not a strong case for nonradial mode exci-

tation. Although, as we shall see later, its spectrum may be explained in

such terms it may also be interpreted in terms of a single radial mode with

periodically modulated amplitude. The strong case from the same cluster is

the object V37, which has only two close peaks. The observed modulation is

then the result of two-frequency beating like in RRd stars but with a longer

period. According to surveys summarized by Kovács (2002) the cases of two

close peaks are more common.

1.3 Dwarf - type pulsators

Along the main-sequence band there is only one star, BW Vul, that mimic

the behaviour of Cepheid and RR Lyrae stars in its pulsation form. It is

monoperiodic and of high amplitude, 0.3 mag in the V-band. All remaining

pulsators have amplitudes of individual modes below 0.1 mag. Typically,

more than one mode is detected if observations are carried out for a long

time. A good example is FG Virginis, a δ Scuti type star whose oscillation

spectrum is shown in Figure 1.2.

Stars of this type lie in the low-luminosity extension of the Cepheid insta-

bility strip. High-amplitude pulsators are found in this type but all lie above

the main-sequence band. There is a clear correlation between the pulsation

form and the evolutionary status.

Along the main-sequence band, both below and above δ Scuti stars, there

are pulsating stars showing striking diversity in the radial orders n of the

excited modes. In δ Scuti stars we find p-modes of orders from n = 1 up

to 7 and some low-order g-modes. Magnetic stars occupying part of the δ

Scuti domain choose p-modes of much higher orders (n > 20). Immediately

below there is a domain of γ Doradus star, which are high-order g-mode

pulsators. Above δ Scuti stars, after short break around spectral type A0
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Fig. 1.2. Oscillation spectrum for FG Virginis. Amplitudes and frequencies are
from Breger et al. (1998). Numbers on top of the bars indicate the spherical
harmonic orders of modes as determined by Viskum et al. (1998). The three bars
marked with filled circles are at nonlinear combination frequencies. The remaining
22 bars correspond to eigenmode frequencies

we have SPB stars, which also choose high-order g-modes. At still higher

luminosity is the β Cephei domain, where stars pulsate again in low-order

p- and g-modes.

There are three domains of g-mode pulsation along the white dwarf cooling

sequence and a domain in the hot extension of the horizontal branch of sdB

stars which show a similar mode preference as δ Scuti stars. They all, like

the main-sequence stars, are multimode low-amplitude pulsators.

1.4 Inference from linear theory

Linear stability calculations for stellar models predict simultaneous instabil-

ity of a large number of modes leaving to speculation the problem of the final

amplitude outcome of the instability. Nonetheless, such calculations yield an

important step towards understanding stellar pulsation. Their results that

may be directly compared with observations are the ranges in frequency and

spherical-harmonic degree ` of unstable modes. The agreement is a support

for the model in which the driving effect may then be easily identified. On

such grounds, we may claim that we understand the origin of oscillations in

nearly all types of objects mentioned in the previous section. It is remark-

able that, despite the whole richness in the pulsational behaviours, there are

only two driving mechanisms that seem to account for all the cases.

We now have a satisfactory interpretation in terms of the opacity mecha-

nism for the two large instability domains in the H-R diagram: the classical

Cepheid instability strip and the newly explained B star instability strip.

In the first case the driving effect arises in the hydrogen and helium ion-
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ization layers. In the second case it arises in a local maximum of opacity

caused by iron lines at a temperature of about 2 × 105 K. Finding this new

instability strip, which includes main-sequence and subdwarf B stars, fol-

lowed improvement in stellar opacities. In fact, finding instability in models

of B subdwarf models preceded the discovery of oscillations in these stars

(Charpinet et al., 1996).

Even at the linear theory level there are unsolved problems. They con-

cern role of convection, which is far more important for stars of the Cepheid

instability strip, especially but not only in determining its red edge. The

pioneering efforts by Gough (1977) to include the effects of turbulent con-

vection in stellar pulsation were followed by many. Nonetheless an accurate

and credible modeling is missing. In consequence, our understanding of vari-

ability in stars cooler than Cepheids is the poorest. In many cases we are

not even sure whether the variability is due to pulsation and, if it is, whether

it is due to unstable or to stochastically driven modes.

Convection does not always exert a damping effect on oscillations. Brick-

hill (1983) first noted that in the case of slow modes, modulation of the

convective flux during the pulsation cycle promotes driving. He proposed

this effect as the cause of g-mode excitation in ZZ Ceti stars – oscillating

white dwarfs. There are recent developments of this idea by Goldreich &

Wu (1999). This driving mechanism is less common in stars than the clas-

sical opacity-mechanism but it is the only alternative mechanism leading to

mode instability that may be associated with the observed stellar variabil-

ity. In addition to ZZ Ceti stars the mechanism may work in oscillating DB

(helium) white dwarfs and possibly in γ Doradus stars (Wu, 2002).

Typically, in both giant- and dwarf-type pulsators models, there is a large

number of unstable modes. Figures 1.3 and 1.4 show the driving rates as

a function of frequency for low-degree modes in representative models of

δ Scuti and RR Lyrae stars. The former, which approximately fits data

on FG Vir (see Figure 1.2), describes a star in an advanced main-sequence

evolutionary phase. The latter is a model of a horizontal-branch star in

the advanced core helium burning phase. Let us note the differences. The

frequency range of the unstable modes is significantly wider in the main-

sequence star. The instability of radial modes extends in this case from

radial order n = 1 to 7. The wide range of mode frequencies is indeed

observed in δ Scuti stars. Our selected model reproduces very well the

frequency range of modes detected in FG Vir. In helium burning pulsators,

instability goes at most up to n = 3 and this is the highest-order mode

detected in such stars.

More important differences are seen in the nonradial mode properties.
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Fig. 1.3. Growth rates and frequencies of low-degree (` ≤ 3) modes in a model of a
δ Scuti star. The mass is 1.8 times solar, the initial composition is similar to that
of the sun and the evolutionary status is an advanced phase of hydrogen burning
in the convective core (the central abundance Xc by mass of hydrogen is reduced
to 0.085)

.

Fig. 1.4. Growth rates and frequencies of low-degree (` ≤ 3) modes in a model of a
RR Lyrae star. The mass is 0.67 times solar, the initial composition is typical for
population II objects and the evolutionary status is an advanced phase of helium
burning in the convective core (the helium abundance is reduced to 17% of the
original value). Lack of symbols corresponding to ` = 2 and 3 in certain frequency
ranges means lack of unstable modes.

There are many more nonradial modes between consecutive radial modes

in the RR Lyrae model than in the δ Scuti model. Spectra of nonradial

modes are actually denser than shown in Figures 1.3 and 1.4, as each of the

modes is split into 2` + 1 components by rotation. The much greater mode

density in the RR Lyrae model is a consequence of the much larger values
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Fig. 1.5. The ratio of the Brunt-Väisälä to the fundamental radial mode frequency
in the models used in Figures. 1.3, 1.4 and in a model ZAMS star. In the ZAMS
model the central hydrogen abundance Xc = 0.7. The maximum value of the ratio
in the RR Lyrae model is about 300 and it is reached at r/R = 0.007

of the Brunt-Väisälä frequency N in the interior of this star. In Figure 1.5

we see the behaviour of N(r) in the two models discussed and in a ZAMS

star of the same mass as our selected δ Scuti star. The effect of evolution

is a growth of N in the interior and a development of a gravity wave (G)

cavity there.

The radial order ng associated with the G cavity is approximately given

by

ng ≈

√

`(` + 1)

π

∫

√

(

N

ω

)2

− 1
dr

r
(1.1)

(e.g. Van Hoolst et al., 1998), where ω = 2πν is the angular frequency of

the mode. The integral should be taken over the G cavity. The frequency

distance between consecutive modes of the same degree is thus estimated as

∆`,ng
≈

ω

ng

. (1.2)

In the RR Lyrae star model, at ` = 1 and a frequency corresponding to the

fundamental radial mode, we get ng = 180.

Already in the evolved main-sequence star, some additional nonradial

modes result from the growth of the G cavity around the shrinking convective

core. Also in this model we see structures in the γ(ν) dependence reflecting

mode trapping effect. Local minima correspond to modes partially trapped

in the G cavity. The effect is much more dramatic in the RR Lyrae star.

For all nonradial modes most of the oscillation energy is confined to the
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G cavity. The relative contribution from the acoustic cavity is only about

10% for the ` = 1 modes corresponding to local maxima. At this degree

still most of contribution to damping and driving arises in the outer layers

so that the difference between in driving rates between the ` = 0 and ` = 1

modes is mainly due to the difference in inertia. At ` = 2 and 3, damping

in the G cavity results in mode stability in certain frequency ranges.

Even for the most strongly trapped nonradial modes, the driving rates,

γ, are significantly lower than those for the closest radial modes, which

is not true in the δ Scuti star. We may be tempted to take this fact as

the explanation why RR Lyrae and other evolved stars exhibit preference

for radial pulsation. However, more detailed comparison with observations

warns us against such inference. The modes detected in FG Virginis at

ν ≈ 10d−1 have their driving rates lower by six orders of magnitude than

those at ν ≈ 30d−1. The dependence of amplitude on frequency shown in

Figure 1.2 bears no resemblance to the γ(ν) dependence shown in Figure 1.3.

Clearly, we cannot rely on the driving rates for predicting amplitudes of

modes surviving in the nonlinear development.

1.5 Saturation of the linear instability

Christy (1964) was the first to construct fully nonlinear models of Cepheids

and RR Lyrae stars. His models converged to a periodic constant ampli-

tude pulsation state, which – according to his interpretation – was reached

through a saturation, that is, through modification induced by pulsation in

the mean structure, leading to zeroing driving rate. Depending on mean

value of L and Teff , the terminal state was either fundamental or first-

overtone pulsation. Later on Stobie (1969) found also second-overtone pul-

sation in his Cepheid models. It took 30 years to find such a form of pul-

sation in real objects. Stellingwerf (1975) with his novel method was able

to determine exclusive domains in the H-R diagram of first overtone and

fundamental mode pulsation and an intermediate domain, which he named

the EO (either-or), where both modes were possible depending which one

was excited first.

The origin of double-mode pulsation was not understood for a long time

and even now the problem is not fully clarified. It has been approached

in a number of works by means of numerical solution of the full nonlinear

problem and with the amplitude equation formalism. Nonlinear saturation

shows up at the cubic order in pulsation amplitudes. With our cubic order

formalism we (Dziembowski & Kovács, 1984) derived a simple criterion for

double-mode pulsation. Here I outline our analysis.
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The nonlinear driving rates were written in the form

γj,N = γj

(

1 +
∑

k

αjkA
2
k

)

. (1.3)

Only the case of two linearly unstable modes was considered. It was assumed

that all saturation coefficients αjk are negative, which is necessary for sat-

uration and confirmed by subsequent numerical calculations. The terminal

amplitudes are determined by the set of two equations (1.3) with γj,N = 0.

For monomode solutions, which with our assumptions always exist, we have

A2
j = −

1

αjj

. (1.4)

It is stable if sk ≡ αkj/αjj − 1 > 0, where k 6= j, which means that the

mode is more effectively saturating instability of the competing mode than

that of its own. If s1 > 0 and s2 > 0 then we are in the EO domain. The

double-mode solution

A2
1 = −

1

α11

s1

s1 + s2 − s1s2

, A2
2 = −

1

α22

s2

s1 + s2 − s1s2

exists if s1s2 > 0. However, it is stable only if s1 < 0 and s2 < 0. Thus,

monomode and double-mode pulsations are mutually exclusive.

The fact that that double-mode pulsations are so rare may be interpreted

in two ways. Either the range of parameters leading to s1 < 0 and s2 < 0

is very narrow or we have s1 > 0 and s2 > 0 but the amplitude of mode 1

cannot reach its saturation value given in equation (1.4) due to an accidental

resonance with a damped mode. We preferred the second way and suggested

that there is a 2:1 resonance with a higher-order radial mode. The problem

with this idea, which was realized later, was lack of required resonance in

realistic models of double-mode pulsators.

Successful numerical simulations of double-mode pulsation in Cepheids

(Kolláth et al., 1998) and RR Lyrae stars (Feuchtinger, 1998) were obtained

only after effects of convection were included. The resonance played no

role in this models. In a recent paper Kolláth et al. (2002) interpreted

these results with the amplitude equations. They found that the condition

s1 < 0 and s2 < 0 was satisfied in their double-mode pulsators. This

was never the case in purely radiative models. Unfortunately, they did not

identify the specific effect of convection responsible for the enhancement of

self-saturation, causing stabilization of the double-mode pulsation.

An unpleasant aspect of this solution is the fact that it rests on a crude

description of convection in which there are four adjustable parameters. Fur-

thermore, there is a problem of nonradial modes, whose presence has been
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ignored in all numerical models so far. We will see later that a resonant cou-

pling with those modes may play a role for the properties of radial pulsation.

There is also a question regarding the role of strongly unstable high-degree

modes. Many such modes, having driving rates similar to the radial modes,

exist in all models of RR Lyrae star and Cepheids (e.g. Van Hoolst et al.,

1998). If the saturation is the dominant amplitude-limiting effect, then we

should expect that often one of such modes wins the competition. The

resulting pulsation would be undetectable by means of photometry. Obser-

vations do not indicate that it may be the case. The RR Lyrae strip seems

filled up with the pulsators. Thus, we have to admit that we still do not un-

derstand why radial monomode pulsation is preferred by stars in the upper

Cepheid instability strip.

1.6 Amplitude limitation by resonances

That resonances may play a role in stellar pulsation has been realized well

before numerical modeling became possible. This is what Rosseland (1949)

wrote about about early attempts to explain the shapes of Cepheid light

curves: The conclusion seems unavoidable that some particular property of

the star plays an active role in shaping the curves. It may be something like

a resonance between the fundamental and higher mode suggested by Woltjer

(1935, 1937).

Modern investigations have confirmed this.

1.6.1 The 2:1 resonance

The Hertzsprung sequence of Cepheid light curves has been successfully

explained in terms of the frequency distance from the 2:1 resonance centre

between the fundamental mode (n = 1) and the second overtone (n = 3)

(Simon & Schmidt, 1976, Buchler et al., 1990).

Also Woltjer was the first to point out that the 2:1 resonance causes

amplitude limitation. Since it is a lower-order effect in terms of amplitude,

one might expect that it should be more efficient in amplitude limitation

than saturation. However, it does not seem to be the case in Cepheids. The

amplitudes at 10-day period, which is the resonance centre, are not markedly

lowered. The point is that this resonance may be a sole amplitude-limiting

effect only if the damping of modes of higher radial order is fast enough. A

stable double-mode solution exists only if 2γ1 + γ3 < 0.

A critical role for the 2:1 resonance in the amplitude limitation was found

in limiting the growth of the ε-mechanism-driven instability of high-mass
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stars by Papaloizou (1973). He showed that the resonance between the

unstable fundamental mode and the stable first overtone is very effective

preventing a catastrophic mass loss, which was suggested by earlier investi-

gators.

1.6.2 Parametric resonance and dwarf and giant dichotomy

Three-mode coupling caused by the parametric resonance is another lowest-

order nonlinear effect leading to amplitude limitation. In this case the effect

is due to dissipation of energy by a pair of linearly stable (daughter) modes

for whose sum are close to frequency of an unstable (parent) mode. Denoting

with subscripts a and b the daughter modes and with c the parent mode we

have

ωc = ωb + ωa + ∆ω,

with |∆ω| � ωc and

γc > 0, γa < 0, γb < 0.

An exponential growth of modes a and b occurs if the amplitude of mode

c exceeds the critical value, which (e.g. Vandakurov, 1981) is given by

Ac,crit =

√

√

√

√

γaγb

Cabc

[

1 +

(

∆ω

γd

)2
]

, (1.5)

where γd = γa + γb. The coupling coefficient Cabc is a volume integral with

integrand containing products of eigenfunctions of the three involved modes.

The general expression is complicated (Dziembowski, 1982) but it is easy

to show that Cabc 6= 0 only if the azimuthal orders satisfy the condition

mc = ma + mb and the difference between the two highest ` is not larger

than the lowest one. For instance, if the parent mode is radial then the

daughter modes must have ma = −mb and `a = `b.

Freedom in choosing `a and ma allows fine frequency tuning. The fre-

quency distance, ∆`,ng
, decreases approximately as `−1 (see equations 1.1

and 1.2), hence considering daughter modes with ` → ∞ we may approach

∆ω = 0. This favours high-` mode excitation. The opposite effect is that

of damping. If the quasi-adiabatic approximation applies then we have ap-

proximately (e.g. Van Hoolst et al., 1998)

γ ≈
N̄2

τg

`2

ω2
, (1.6)

where τg is the thermal time scale of the G cavity. In main-sequence stars
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the instability first appears at certain intermediate though still rather high

` values implying that the daughter modes are most likely undetectable.

Important observable consequences occur for the parent mode, whose am-

plitude may be reduced to the level not much exceeding Ac,crit and may be

modulated.

The character of the terminal pulsation state resulting from the interac-

tion between the parent and the daughter modes depends on the mismatch,

∆ω, and the driving (damping ) rates γ. Stable stationary solutions with

the parent-mode amplitude given by the right-hand side of equation (1.5),

but with γd replaced by γs = γc + γd exist in wide range of parameters

(see Wersinger et al., 1980, Dziembowski, 1982). Outside that range, in

particular for a close resonance, only time-dependent amplitude limitation

is possible. The solution may take a form of a single- or multi-periodic limit

cycle and, going through a series of period doubling, become chaotic. Still

equation (1.5) may be used for a crude estimate of the mean amplitude.

If γs < 0 then amplitude limitation in any form by the sole effect of the

parametric resonance is not possible.

My first application of the theory of parametric resonance was to estimate

the amplitude of an ` = 1 g-mode in the sun. Dilke & Gough (1972) showed

that the mode may be driven by the ε mechanism and speculated that it

might reach high amplitude, high enough to mix the solar interior. This was

an ingenious idea invented to solve the neutrino deficit problem. The results

of my calculations (Dziembowski, 1983) were unfortunately discouraging.

The parametric instability was found to set in at very low amplitudes, far

lower than needed for mixing. The next application was to explain the low

pulsation amplitudes of δ Scuti stars (Dziembowski & Królikowska, 1985).

We found that the amplitudes of unstable modes were limited by the three-

mode interaction to the level of 1 - 10 mmag, which was in a rough agreement

with observations. The values are well below the ones needed to saturate

the instability.

It seemed that we were on the road toward explaining the systematic

difference between giant and dwarf pulsators. In Cepheids and RR Lyrae

stars the parametric resonance does not prevent high pulsation amplitudes

for two reasons. Damping rates of daughter modes are much higher than in

δ Scuti stars due to the much higher N̄ (see Figure 1.5) and τg is shorter.

The second reason is a weaker coupling (smaller Cabc) between the parent

radial and the potential daughter modes. The latter are trapped in the deep

interior, where the former ones have very low amplitudes. The truth is,

however, that not much happened after those works. The difficulty is that

most likely much more than just one pair of daughter modes is excited at
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the onset of the parent-mode instability. It is easy to show that constant-

amplitude solutions do not exist if there are more than two pairs. Beyond

that, the problem is difficult and to my best knowledge, was never solved.

1.6.3 Higher-order parametric resonance and the Blazkho effect

Resonant coupling between radial and nonradial modes of similar frequen-

cies is a third-order effect in the amplitude expansion. Nonetheless, it may

have a greater impact on RR Lyrae pulsation than the lower-order resonant

coupling due to the properties of the mode-trapping pattern. We have seen

in Figure 1.4 that nonradial modes with frequencies close to those of radial

modes are also close to the maxima of the driving rates. This means rel-

atively large amplitudes in the acoustic cavity, hence stronger coupling to

radial modes and lower damping rates. Both effects promote parametric in-

stability. Figure 1.4 also shows that the trapping favours excitation of ` = 1

modes.

Van Hoolst et al. (1998) derived the following expression for the amplitude

of the parent mode amplitude at the onset of the instability:

A2
0 >

√

∆ω2 + γ2
`,N

C00``

.

It is similar to equation (1.5), but specialized to a radial mode and it takes

into account saturation of driving by the radial mode, which makes γ`,N

negative. Our survey (Dziembowski & Cassisi, 1999) of realistic models of

RR Lyrae stars has revealed that excitation of radial modes is quite likely.

The probability ranges from 0.3 to 0.9. A study of the nonlinear development

(Nowakowski & Dziembowski, 2001) has shown that in this case there is

always a constant-amplitude pulsation state. If a single ` = 1,m = 0 mode

is excited then the effect may easily escape detection. The phases of the

two modes are locked so that variability remains monoperiodic with only

slightly modified period. The effect on the amplitude is more significant

but always the radial component strongly dominates in the light and radial

velocity variations.

A more interesting situation arises if a pair of ` = 1 modes is excited. The

following possibilities exist: the two modes may still be (i) axisymmetric but

belong to different triplets; it may be a m = ±1 pair of (ii) the same triplet

or; (iii) different triplets. What matters is only that the frequency mismatch

∆ω = 2ω0 − (ω1,k,mk
+ ω1,n,mn),

where subscripts k and n stand for radial orders of ` = 1 modes while
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mk and mn are the corresponding azimuthal orders, is small and that the

modes are located possibly close to maxima of the linear driving rate. In this

case, the phase lock produces an equidistant triplet with the central peak

corresponding to the radial mode, giving rise to a phase and/or amplitude

modulated pulsation.

The model predicts equal amplitudes of the side peaks reaching up to 0.35

of the central-peak amplitude. It is a viable model for stars like V6 in NGC

6362 and it is appealing because, if correct, then from the Blazkho period we

get valuable information about the deep stellar interior. Unfortunately, the

model does not explain all RR stars with variable amplitudes. It is certainly

not applicable to cases when only two close peaks are detected. It is also

not readily applicable if two side peaks are seen but with too large or very

unequal amplitudes.

1.7 Final remarks

Today the main emphasis in studies of pulsating star research is put on as-

teroseismology, that is on using pulsation data to constrain stellar models,

as well as on other applications such as determination of distances to stellar

systems. The physics of the pulsation phenomenon is often regarded as suf-

ficiently well understood. In this review I have been advocating an opposite

view. I presented a number of problems posed by observations where we are

lacking physical understanding.

Even though the domains of occurrence of various types of oscillations in

the H-R diagram are well reproduced with the results of linear stability anal-

yses, still certain problems within the linear stability theory remain, awaiting

progress in the treatment and understanding of the interaction between con-

vection and pulsation. Among the unsolved problems, the outstanding one

is the cause of the universal variability in red giants.

Modern observations do not challenge the hypothesis of pure radial mo-

nomode pulsation for the majority of Cepheids and RR Lyrae stars. These

objects seem indeed to be amazingly simple natural heat engines. Why this

simplest form of motion is chosen we do not quite understand. Many other

pulsation modes are unstable. Explaining complexity in nature has became

fashionable in science. In my view, priority should be given to explaining

simplicity. The question why pulsation is so simple was not answered by our

predecessors in the field of stellar pulsation research. Also our generation

did not give a fully satisfactory answer. I hope that one of our younger

colleagues will tell us why.
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Kolláth, Z., Beulieu, J.P., Buchler, J.R. & Yecko, P., 1998, ApJ, 502, L55.
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