
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 27 January 2004 (MN LATEX style file v2.2)

Asteroseismology of the β Cephei star ν Eridani - III
extended frequency analysis and mode identification

J. De Ridder1, J.H. Telting2, L.A. Balona3, G. Handler4, M. Briquet1,
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ABSTRACT

Using the large photometric and spectroscopic datasets of the ν Eri multi-site
campaign (Aerts et al., 2004, and Handler et al., 2004), we present an extended fre-
quency analysis and a photometric mode identification. For the extended frequency
analysis we used an improved radial velocity time series, the second moment time
series, and the line profiles themselves. In the radial velocity time series, we can now
detect an additional pulsation frequency which was previously only found in photo-
metric time series. We also report several new candidate pulsation frequencies. For 7
frequencies the photometric mode identification indicates that they belong to a ra-
dial mode and six dipole modes, and for three frequencies the degree ` could not be
unambiguously determined. We also placed ν Eri in the HR-diagram by determining
Teff using Geneva plus Strömgren photometric calibrations, spectral energy distribu-
tion fitting, and NLTE Hydrogen and Helium line profile fitting, and by determining
log L/L� using the Hipparcos parallax and a Hβ calibration.

Key words: stars: variables: other – stars: early-type – stars: oscillations – stars:
individual: ν Eridani – techniques: spectroscopic – techniques: photometric

1 INTRODUCTION

The massive B-type β Cephei stars are of particular astero-
seismic interest. After all, they will be the next generation
supernovae, thereby chemically enriching our environment.
Modelling their evolution requires, however, a thorough un-
derstanding of their convective core and of internal rota-
tional mixing, two topics of which there is currently very
limited knowledge. Using low-degree pulsation modes, which
have very deep turning points, to probe this convective core
currently seems the best way to resolve this problem.

The pulsation periods of β Cephei stars (3-8 h) are,
however, significantly longer than those of δ Scuti stars or
white dwarfs, making them more challenging targets to de-
tect pulsational frequencies. This is why from October 2002
until January 2003, a large multi-site and multi-technique
campaign for a β Cephei star was set up. More than 2000
high-resolution spectra and 3000 photometric measurements

in three passbands were obtained for ν Eridani (HD29248,
B2III). The data and a frequency analysis are presented in
Handler et al. (2004, hereafter Paper Ia), and in Aerts et
al. (2004, hereafter Paper Ib). The present paper exploits
these datasets further.

Successful seismic modelling not only involves detecting
pulsation frequencies, but also mode identifications. Know-
ing the degree ` significantly reduces the number of possi-
ble mode matches, and can therefore help narrow down the
set of candidate models. In addition, it is essential to know
whether we are dealing with an m = 0 mode, as the zonal
modes are not affected by rotation in the first-order approx-
imation.

In this paper we present the final frequency analysis
results (Section 2) of both the spectroscopic and the pho-
tometric time series, as well as mode identification results
(Section 4). In addition we determined the basic stellar pa-
rameters to put ν Eridani in the HR-diagram (see Section
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3). These results will serve as the starting point for future
stellar modelling papers (Pamyatnykh et al., 2004, in prepa-
ration; Ausseloos et al., 2004, in preparation).

2 FREQUENCY ANALYSIS

The time series of ν Eri presented in Papers Ia and Ib are
the largest ever collected for a β Cephei star, with the sole
purpose to detect as many pulsational frequencies as possi-
ble. In what follows we extend the frequency analysis done
in the previous papers, by a reanalysis of the radial velocity
time series, and for the first time a frequency analysis of the
line profile time series.

2.1 The radial velocity

We carefully redetermined the moments (see Aerts et al.,
1992, for a definition) of each of the three Si lines of the
SiIII triplet around 456 nm. In the intervals [455.0, 455.6]
nm, [456.4, 457.2] nm, and [457.2, 457.75] nm around respec-
tively the SiIII 455.3 nm, the SiIII 456.8 nm and the SiIII
457.5 nm line, we first renormalised locally the spectrum
and then selected the part which should not be regarded as
continuum. This part contains the spectral line as well as a
bit of continuum that is difficult to distinguish from the far
wings of the line. The remaining part of the interval was used
to compute the standard deviation σ of the normalised flux
noise. The region of the spectrum with points at least 2σ in
flux away from the continuum was then extracted as the line
profile, of which consequently the normalised moments were
computed. The integration boundaries of the moments are
thus dynamically determined depending on the S/N (≡ σ−1)
of the spectrum. The corresponding integration interval is
much smaller than the wavelength intervals stated above.
The advantage is a considerable noise reduction in the mo-
ments time series. As the main mode of ν Eri has a large
amplitude (∼ 22 km/s), the spectral lines show a rather large
periodic Doppler shift. A fixed wavelength integration range
would therefore have to be taken quite large to ensure that
the entire line profile is always included. But this would also
mean the inclusion of noisy continuum on the red side when
the line shows a blue shift and vice versa, which degrades
the accuracy of the moments.

Note that, as in Paper Ib, we compute the radial veloc-
ity with the first moment of the line profile, and not by the
central wavelength of a fitted Gaussian, as the Si line pro-
files are sometimes rather skewed. We also did not use the
wavelength of the minimum flux point as this could lead to
frequency harmonics in the vrad data regardless of whether
the star pulsates linearly or not.

After removing noisy data points (S/N < 150) and out-
liers, we retained 1740, 1874 and 1827 data points for re-
spectively the SiIII 455.3 nm, 456.8 nm and the 457.5 nm
lines. We did a careful frequency analysis of these vrad data
and we tabulate the results later in this Section. We find
all the “independent” frequencies mentioned in Paper Ib,
and in addition we do now find three (instead of only two)
frequency peaks of the multiplet around 6.24 d−1. We also
find most of the “combination” frequencies stated in Pa-
per Ib, plus some additional ones. Just as in Papers Ia &

Ib, we identify a combination frequency as a frequency out-
side the usual β Cephei frequency interval of [3, 8] d−1,
and which can be written as a linear combination of two or
more independent frequencies within the estimated obser-
vational errors. During multi-frequency solution determina-
tions, these combination frequencies are fixed to their exact
linear combination. We realize, however, that this approach
is not without risk, as it might not be impossible that a
linearly stable high-order eigenfrequency close to but not
exactly equal to a linear combination frequency might be
excited due to non-linear effects. In such a case, fixing the
combination frequencies would lead to a biased estimate of
the independent frequencies. We nevertheless choose to fix
the combination frequencies as it seems unlikely that all or
even most of them would be real eigenfrequencies. The al-
ternative, i.e. introducing extra free parameters, would then
lead to overfitting and thus to an excessive variance of the
estimated independent frequencies.

We made an effort to determine the optimal multi-
frequency solution in an N -dimensional box with edges 2∆ν
around the initial estimate. One way of doing this is to make
an N -dimensional grid in the box, with mesh size δν and ver-
ify the performance of the frequency solution in each of the
(2∆ν/δν + 1)N grid points. This number of grid points is,
however, computationally unfeasible for ν Eri for which we
have N = 8 and ∆ν = 10−2 d−1 and for which we would
like to have δν = 10−4 d−1. We therefore resorted to N -
dimensional Powell minimisation (see e.g. Press et al., 1992)
which we choose because there is no need for derivatives.
The function to minimise was the χ2 function with 8 depen-
dent and 12 combination frequencies in the case of a spec-
troscopic dataset, and 9 dependent frequencies and 14 com-
bination frequencies in the case of a photometric dataset.
This method seemed to perform quite well in a reasonable
amount of time. Unfortunately, the window function of the
spectroscopic time series has local maxima at ν = 0.0023
d−1 and at ν = 0.0046 d−1, which may have led the algo-
rithm to an alias frequency. We therefore also systematically
checked whether the frequency combination

{ν1 + n1 · 0.0023, ν2 + n2 · 0.0023, · · · , ν8 + n8 · 0.0023},

where {νi} is the solution after minimisation and ni ∈
{0,±1,±2}, has a better χ2 value. The results of this opti-
misation approach are given in Table 1, where we also give
for each frequency the amplitude and phase together with
their estimated uncertainties.

In fact, one reason for giving Table 1 in addition to Ta-
ble 2 of both Papers Ia & Ib, is to provide a better feeling
of the uncertainties involved. We underline that the error
estimates on the frequencies given in papers Ia & Ib are
formal estimates (as clearly stated), derived under the as-
sumption of an equidistant time series of a monoperiodic
signal with uncorrelated noise. The different values of the
derived frequencies for the different Si lines and for the dif-
ferent Strömgren passbands in Table 1 provides another way
to assess the uncertainties on the frequencies. The uncer-
tainties on the amplitudes and the phases were computed,
as usual, with the local curvature of the χ2 function where
we assumed the frequencies to be known. The derived val-
ues of the amplitudes and phases (the latter are not given
in papers Ia & Ib) for the different Si lines provide again
another view on the uncertainties involved. Especially the
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Asteroseismology of ν Eri 3

phases seem to be rather inaccurately determined. We note
that both the phase and its uncertainty depend on t0 as well
as on the exact value of the frequency.

Concerning the close frequencies around 6.24 d−1, we
easily find the frequencies ν6 and ν8 in the new radial veloc-
ity time series; these were also detected in the photometric
time series. The frequency ν8 is new for the spectroscopic
data, as it was not found in the vrad data of Paper Ib. A
peak at the position of ν7 (a frequency which was clearly
detected in Paper Ib, and mentioned as a possible photo-
metric signal in Paper Ia) is seen in the radial velocity time
series of all three Si lines, but shows much less power than
mentioned in Paper Ib, as can be read from Table 1. Much
of the evidence for ν7 therefore comes from both Papers Ia
and Ib instead of from our new radial velocity time series.

At this point we would like to mention that we did not
only do a frequency analysis of the first moment, but also
of the second moment 〈v2〉. The motivation to do so is the
β Cephei star β Crucis for which some pulsation frequen-
cies were found in the higher moments but not in 〈v〉 (Aerts
et al., 1998), and which were later confirmed by satellite
(WIRE) data (Cuypers et al., 2002). However, a frequency
analysis of the second moment is notoriously difficult be-
cause of the many possible cross-term frequencies. If there
are N frequencies νi detected in the first moment, there can
be N(N + 1) frequencies present in the second moment: be-
sides νi also 2νi, νi +νj and νi−νj (Aerts, 1996). In the case
of ν Eri this would imply that we can expect 420 frequen-
cies, although not all of them need to have an amplitude
above the noise level. The power spectrum of the 2nd mo-
ment time series of the SiIII (456.8 nm) line shows indeed
many peaks, and we do not list them here for the sake of
brevity. The bottom line of our analysis is that besides the
many cross-term frequencies, we did not find any convincing
new frequencies.

2.2 The line profiles

We continued our quest for frequencies by doing a frequency
analysis on the line profiles of the SiIII (455.3 nm) and the
SiIII (456.8 nm) lines. Indeed, several examples of β Cephei
stars exist for which some pulsation frequencies are clearly
detected in the line profiles but not in the radial velocity
data (e.g. ε Cen, Schrijvers, Telting & Aerts, 2004).

We considered normalised flux time series at each
wavelength point in the intervals [455.16, 455.40] nm and
[456.678, 456.922] nm. We used the clean algorithm
(Roberts, Lehar & Dreher, 1987) to search for frequencies
but systematically verified with classical Fourier analysis
that our results are not numerical artifacts. The frequency
analysis was done in the interval [0, 30] d−1 with a frequency
step of 2 10−6 d−1. Consequently, we summed the power over
all the wavelength bins to obtain an overall power spectrum.
The result is shown in Fig. 1. In the corresponding Table 2
we list the 20 frequencies which are clearly present in both
silicon line profiles. We also list each time the suspected
identification, which is always either one of the indepen-
dent frequencies also found in the radial velocity, or a linear
combination of these independent frequencies. Besides these
frequencies we also consider the low amplitude frequencies
4.707 d−1 and 4.742 d−1 worth to be compared with theo-
retically predicted frequencies.

Figure 1. The power spectra of the SiIII (455.3 nm) and the SiIII

(456.8 nm) line profiles, obtained by summing the power at each
wavelength point in the intervals [455.16, 455.40] nm respectively

[456.678, 456.922] nm. The power spectra are plotted on top of

each other, and can hardly be distinguished. The clean algorithm
with gain parameter g = 0.2 was used. The thick almost horizon-

tal line denotes the 1σ noise level of the non-clean-ed Fourier

power spectrum after prewhitening the time series with the 20
frequencies mentioned in Table 2, and was at each frequency ap-

proximated by the average power in a 0.1 d−1 interval around
that frequency.
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In Table 2 we list two frequency combinations as possi-
ble identifications for the frequencies 5.51 d−1 and 5.89 d−1.
We consequently asked ourselves the following question: as
we have 9 genuine eigenfrequencies ν1, · · · , ν9, shouldn’t we
expect that about every newly found frequency peak in the
β Cephei pulsational frequency range [νb, νe] = [3, 8] d−1

can be written as some linear combination of these eigenfre-
quencies? Part of the answer is that it turns out that there
are actually not many possible linear combinations that map
frequencies from [νb, νe] back into the same interval and that
are at the same time not too far-fetched with respect to
the linear combinations found in the Fourier spectrum of
the radial velocity. Only the general combinations 2νj − νk

and νj + νk − νi seem to be acceptable. We now compute
the probability that a randomly chosen frequency coincides
with a combination frequency νc. Given n independent fre-
quencies the number of possible combinations 2νj − νk is
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Table 1. Estimates of the frequencies, amplitudes and phases of the modes found in the radial velocity and the photometric time

series. Each frequency was assigned a unique identification. The signal is always written as C +
∑N

i=1
Ai sin(2πνi(t − t0) + ϕi), where

t0 = HJD2452000. 8 independent and 12 combination frequencies were found in the vrad data, and 9 independent and 14 combination
frequencies were found in the photometric data. The combination frequencies were always fixed to their exact linear combination of

independent frequencies. The uncertainties on the last given digit of the amplitudes and phases are given between brackets.

vrad (SiIII 455.3 nm) vrad (SiIII 456.8 nm) vrad (SiIII 457.5 nm)

ID Freq. (d−1) A (km/s) ϕ (deg) Freq. (d−1) A (km/s) ϕ (deg) Freq. (d−1) A (km/s) ϕ (deg)

ν1 5.76330 22.36(7) 318.0(2) 5.76330 22.50(6) 318.3(2) 5.76330 22.74(6) 318.7(2)

ν2 5.65396 8.91(9) 69.5(6) 5.65394 9.04(8) 76.5(5) 5.65394 9.09(8) 77.1(5)
ν3 5.62006 8.11(9) 27.8(6) 5.62006 8.18(8) 29.2(6) 5.62008 8.29(8) 23.6(5)

ν4 5.63734 7.91(8) 182.8(6) 5.63731 8.00(7) 191.8(5) 5.63731 8.03(7) 191.4(5)

ν5 7.89845 1.00(7) 307(4) 7.89847 1.00(6) 305(4) 7.89833 0.97(6) 340(4)
ν6 6.24434 1.03(8) 152(4) 6.24500 1.03(7) 0(4) 6.24510 0.96(7) 335(4)

ν7 6.22304 0.31(7) 272(15) 6.22099 0.36(6) 55(10) 6.22114 0.35(6) 17(11)

ν8 6.26080 0.76(8) 86(7) 6.26231 0.76(7) 105(5) 6.26250 0.79(7) 64(5)
ν12 ν1 + ν3 2.84(8) 184(2) ν1 + ν3 2.82(8) 183(2) ν1 + ν3 2.84(8) 184(2)

ν13 ν1 + ν4 2.59(8) 345(2) ν1 + ν4 2.59(7) 350(2) ν1 + ν4 2.59(8) 345(2)

ν14 2ν4 0.61(7) 153(7) 2ν4 0.59(6) 163(6) 2ν4 0.61(7) 153(7)
ν15 ν1 + ν2 3.19(9) 229(2) ν1 + ν2 3.20(8) 233(1) ν1 + ν2 3.19(9) 229(2)

ν16 2ν1 0.70(7) 96(6) 2ν1 0.75(6) 97(5) 2ν1 0.70(7) 96(6)

ν17 ν1 + ν5 0.52(7) 93(8) ν1 + ν5 0.48(6) 88(8) ν1 + ν5 0.52(7) 93(8)
ν19 ν1 + ν2 + ν3 1.45(7) 103(3) ν1 + ν2 + ν3 1.50(6) 108(2) ν1 + ν2 + ν3 1.45(7) 103(3)

ν22 2ν1 + ν3 0.94(8) 351(5) 2ν1 + ν3 0.95(8) 347(5) 2ν1 + ν3 0.94(8) 351(5)

ν23 2ν1 + ν4 0.88(8) 160(5) 2ν1 + ν4 0.76(7) 164(5) 2ν1 + ν4 0.88(8) 160(5)
ν24 2ν1 + ν2 1.14(9) 37(5) 2ν1 + ν2 1.11(8) 40(4) 2ν1 + ν2 1.14(9) 37(5)

ν25 3ν1 0.52(7) 178(8) 3ν1 0.50(6) 169(7) 3ν1 0.52(7) 178(8)

ν26 2ν1 + ν2 + ν3 0.94(7) 261(4) 2ν1 + ν2 + ν3 0.92(6) 263(4) 2ν1 + ν2 + ν3 0.94(7) 261(4)

Strömgren u Strömgren v Strömgren y

ID Freq. (d−1) A (mmag) ϕ (deg) Freq. (d−1) A (mmag) ϕ (deg) Freq. (d−1) A (mmag) ϕ (deg)

ν1 5.76326 73.5(2) 63.4(2) 5.76327 41.0(1) 64.4(2) 5.76327 36.9(1) 63.0(2)

ν2 5.65391 37.9(2) 172.7(3) 5.65396 26.5(1) 162.0(3) 5.65393 25.1(1) 168.1(3)
ν3 5.62009 34.6(2) 111.7(3) 5.62007 23.9(1) 117.3(3) 5.62006 22.7(1) 118.4(3)

ν4 5.63715 32.2(2) 319.8(4) 5.63720 22.4(2) 307.8(4) 5.63718 21.1(1) 313.6(4)

ν5 7.89757 4.3(2) 246(3) 7.89769 3.1(1) 219(3) 7.89779 2.9(1) 195(2)
ν6 6.24352 3.9(2) 61(3) 6.24406 2.6(1) 307(3) 6.24326 2.6(1) 114(3)
ν8 6.26181 2.8(2) 317(4) 6.26178 1.9(1) 322(4) 6.26182 1.7(1) 309(4)

ν9 7.20012 1.4(2) 109(8) 7.19984 1.0(1) 179(8) 7.19964 1.2(1) 223(6)
ν10 0.43235 5.5(2) 187(2) 0.43190 3.2(1) 289(2) 0.43232 3.2(1) 192(2)
ν11 ν2 + ν3 2.8(2) 11(4) ν2 + ν3 1.7(1) 2(5) ν2 + ν3 1.4(1) 2(5)

ν12 ν1 + ν3 11.1(2) 297(1) ν1 + ν3 7.9(1) 303(1) ν1 + ν3 7.5(1) 300(1)
ν13 ν1 + ν4 10.9(2) 150(1) ν1 + ν4 7.7(2) 139(1) ν1 + ν4 7.1(1) 143(1)

ν15 ν1 + ν2 12.6(2) 5.6(9) ν1 + ν2 9.0(1) 354.9(9) ν1 + ν2 8.4(1) 358.8(9)
ν16 2ν1 4.5(2) 183(3) 2ν1 3.1(1) 176(3) 2ν1 2.9(1) 175(3)
ν17 ν1 + ν5 1.6(2) 44(7) ν1 + ν5 1.2(1) 15(7) ν1 + ν5 1.1(1) 349(6)
ν18 ν1 + ν3 + ν4 1.0(2) 12(12) ν1 + ν3 + ν4 0.7(1) 359(12) ν1 + ν3 + ν4 0.7(1) 15(11)

ν19 ν1 + ν2 + ν3 4.4(2) 256(3) ν1 + ν2 + ν3 3.1(2) 257(3) ν1 + ν2 + ν3 2.6(1) 263(3)
ν20 ν1 + ν2 + ν4 1.0(2) 53(13) ν1 + ν2 + ν4 0.9(1) 30(10) ν1 + ν2 + ν4 0.9(1) 50(9)

ν21 ν1 + 2ν2 0.9(2) 257(14) ν1 + 2ν2 0.8(1) 236(11) ν1 + 2ν2 0.6(1) 253(15)
ν22 2ν1 + ν3 1.8(2) 113(7) 2ν1 + ν3 1.4(1) 106(6) 2ν1 + ν3 1.2(1) 106(6)
ν23 2ν1 + ν4 1.8(2) 335(7) 2ν1 + ν4 1.2(1) 314(7) 2ν1 + ν4 1.1(1) 313(8)
ν24 2ν1 + ν2 2.0(2) 181(6) 2ν1 + ν2 1.4(1) 162(6) 2ν1 + ν2 1.3(1) 166(6)

ν26 2ν1 + ν2 + ν3 1.5(2) 65(7) 2ν1 + ν2 + ν3 1.0(1) 67(8) 2ν1 + ν2 + ν3 0.9(1) 69(8)

simply n (n− 1), and the number of different combinations
νj + νk − νi is n (n− 1) (n− 2)/2. We consider a frequency
to “coincide” with a combination frequency νc if it is in the
interval [νc − δν, νc + δν] with δν being the observational
frequency precision. If n and/or δν is sufficiently small (as
in our case) we can expect that none of these intervals will
overlap with another interval. All of these intervals together
occupy a fraction

δν

νe − νb
n2 (n− 1)

of the total β Cephei frequency range [νb, νe], which is equal
to the probability that a frequency randomly chosen in
this interval falls into one of the intervals. Setting n = 9,
[νb, νe] = [3, 8] d−1, and δν = 10−3 d−1 for the case of ν Eri,
we can roughly estimate this probability to be 13%, i.e. a
non-negligible probability. We must note, however, that if
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Table 2. All frequency peaks which are clearly present in both

SiIII (455.3nm) and SiIII (456.8nm) line profiles. We also list the
suspected identification, where we used the same notation as in

Table 1.

SiIII (455.3nm) SiIII (456.8nm) Possible
Freq. (d−1) Freq. (d−1) Identification

0.10880 0.10886 ν1 − ν2

0.12630 0.12622 ν1 − ν4

0.14270 0.14268 ν1 − ν3

5.51228 5.51224 2ν4 − ν1

5.61986 5.61986 ν3

5.63760 5.63762 ν4

5.65384 5.65390 ν2

5.76334 5.76336 ν1

5.88910 5.88910 2ν1 − ν4

11.27368 11.27364 ν11

11.38330 11.38326 ν12

11.40108 11.40104 ν13

11.41688 11.41688 ν15

11.52670 11.52672 ν16

17.03752 17.03752 ν19

17.16478 17.16480 ν23

17.18004 17.18006 ν24

17.28994 17.28996 ν25

22.80086 22.80086 ν26

23.05362 23.05360 4ν1

5.51 d−1 is a genuine eigenfrequency, it should not be re-
garded as a random frequency as the underlying pulsation
physics may impose a higher or a lower probability that it
can be written as a linear combination of the other eigenfre-
quencies.

In fact, in Fig. 2 we find two indications that the fre-
quencies 5.51 d−1 and 5.89 d−1 might indeed not be com-
bination frequencies. This figure shows the morphology of
the amplitude and the phase distribution of several frequen-
cies found in the SiIII (456.8 nm) line profile time series.
The amplitudes and phases were computed by fitting the
flux time series at each wavelength point with a sum of
20 sines corresponding to the 20 frequencies listed in Ta-
ble 2. The amplitude and phases of these sines then make
up the distributions shown in Fig. 2. We show examples of
both genuine eigenfrequencies and known combination fre-
quencies. The phase diagrams of the 5.51 d−1 and 5.89 d−1

frequencies show a monotonic phase distribution across the
line profile with a large phase range. Such behaviour is typ-
ical for higher degree modes, which would explain why we
don’t see the frequencies in the photometry or the radial ve-
locity data. However, this evidence is not conclusive as the
combination frequency ν11 shows the same phase behaviour
in the line profile. Another indication is that for both 5.51
d−1 and 5.89 d−1 the line profile shows more variability in
the line wings than in the line core, which is also system-
atically true for the eigenfrequencies, while it is vice versa
for the combination frequencies. Again, this evidence is not
conclusive as we do not know how the velocity distribution
of a combination frequency looks like at the surface of the
star, so that we also don’t know what kind of line profile
variations we should expect.

3 BASIC STELLAR PARAMETERS

For a photometric mode identification it is beneficial to have
the position of ν Eri in the HR-diagram. This position and
its error box can also be used as initial guess and additional
constraint for further asteroseismic investigations.

Geneva photometric colours of ν Eri were obtained from
the General Catalogue of Photometric Data (Mermilliod et
al., 1997). From these colours, the Geneva indices X and Y
can be deduced which are independent of interstellar extinc-
tion for hot stars like ν Eri. We then used the calibration
of Künzli et al. (1997) to obtain Teff = 23084± 234 K, and
log g = 3.88 ± 0.19. We emphasise that the uncertainties
quoted are lower limits, as the calibration for hot stars re-
quires the metallicity to be known a priori, but we assumed
it to be solar.

Besides Geneva photometry we also used Strömgren
photometry to estimate the effective temperature. We used
the large literature survey already done by Hauck & Mer-
milliod (1998) to obtain the following quantities for ν Eri:
V = 3.960, b − y = −0.076, m1 = 0.068, c1 = 0.072, and
β = 2.610. With these values we can compute the following
reddening-free indices:

[c1] = c1 − 0.2 (b− y) = 0.087

[m1] = m1 + 0.18 (b− y) = 0.054

[u− b] = [c1] + 2 [m1] = 0.196

(Strömgren, 1966). Consequently, we used the [u− b]− Teff

calibration

5040K

Teff
= 0.1692 + 0.2828 [u− b]− 0.0195 [u− b]2

of Napiwotzki, Schönberner & Wenske (1993) to estimate
Teff = 22500 K.

Estimating Teff was also done by fitting the spectral en-
ergy distribution (SED) of ν Eri. To do so, we collected opti-
cal and infrared fluxes of ν Eri from Glushneva et al. (1992),
and ultraviolet fluxes from Jamar et al. (1976). It is difficult
to estimate to what extend this SED is reddened, but we
tried to correct for reddening by using Fitzpatrick’s (1999)
mean galactic interstellar extinction law. Next, we fitted the
dereddened SED with theoretical SEDs computed from LTE
Kurucz (1994) stellar atmosphere models. The best fit was
obtained for a model with Teff = 21900 K. To have an idea
about the uncertainty of this value, we examined the ef-
fects of varying a little bit the extinction, or the observed
UV fluxes (which are most important for our temperature
determination) within their observational errors. From this,
we roughly estimate the uncertainty to be about 1000 K.

We also used the echelle spectra obtained at the Calar
Alto Observatory (see Paper Ib) to make a spectroscopic
estimate for Teff . We ran the non-LTE fastwind code of
Santolaya-Rey, Puls & Herrero (1997) to generate a grid of
theoretical line profiles of Hα, Hβ, Hγ, HeI (438.7 nm), HeI
(447.1 nm), and HeI (492.2 nm). These theoretical line pro-
files were then compared with the least pulsationally broad-
ened observational line profiles to search for the Teff , log g,
and the particle number ratio n(He)/n(H) for which the
match is best. We verified that the pulsational broadening
does not affect our results. The comparison was first done for
solar He content: n(He)/n(H) = 0.10. For this chemical com-
position no (Teff , log g) combination could be found for which
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6 J. De Ridder et al.

Figure 2. Amplitude and phase distributions for several frequencies, for the the SiIII (456.8 nm) line. On the left hand side the

distributions of the genuine eigenfrequencies plus the frequencies 5.51 d−1 and 5.89 d−1 are shown. For comparison, we also show the
distributions of some combination frequencies, on the right hand side. The amplitudes are unitless as the line profiles are normalised.

The phases are expressed in radians.
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it is possible to fit both the H and the He lines satisfactorily.
We were forced to try higher He abundances and found a sat-
isfying match for n(He)/n(H) = 0.15: Teff = 21000 K and
log g = 3.4, which we show in Fig. 3. For the same enhanced
He content, it is possible to go to somewhat higher Teff and
log g values and still have acceptable fits, although not as
good as the one shown. This leads us to roughly estimate
the uncertainties of Teff and log g to be 1500 K, respectively
0.2 dex. The fact that we seem to find a He overabundance is
not too surprising as the chemical analysis of Kilian (1992)
shows that half of her sample of unevolved B-stars are actu-
ally He overabundant. The very slow rotation of ν Eri (see
Paper Ib) is in fact consistent with our findings in the sense
that Zboril & North (1999) show that He enhanced B-stars
are significantly slower rotators than normal B-type stars.
We are, however, surprised to find a good fit for a log g as
low as 3.4. This would imply a post-MS evolution stage for ν
Eri, which is incompatible with the observed frequencies as
will be shown by Pamyatnykh et al. (2004, in preparation)
and Ausseloos et al. (2004, in preparation). We do not have
a solid explanation for this, but a search in the literature re-
vealed that ν Eri is not an isolated case. Leone & Lanzafame
(1998) encounter similar suspiciously low spectroscopically
determined log g values for the β Cephei stars γ Peg and

δ Ceti. In any case, our spectroscopically derived parame-
ters should be treated cautiously. If there is indeed a He
enhancement, the same should be said about the photomet-
rically derived parameters, as Zboril et al. (1997) show that
not taking into account the effects of He enhancement leads
to overestimated photometrically determined Teff values.

Following the discussion above, we adopt conservatively
Teff = 22000 ± 1500K, in the hope that the true value is
indeed contained in this rather large interval.

In order to compute the luminosity from the visual mag-
nitude V we first need to compute the interstellar extinction
AV . Although AV is very difficult to estimate, we are some-
what fortunate that the galactic latitude b = −31◦ of ν
Eri implies that the star does not lie in the patchy galactic
plane, so that we can make a rough estimate of AV with
the work of Sandage (1972). This leads to AV ≈ 0.2, and
thus to V0 ≈ 3.76. The Hipparcos parallax π = 5.56 ± 0.88
mas implies a distance d = 180 ± 28 pc. The absolute vi-
sual magnitude is therefore MV0 = −2.52 ± 0.34 where we
assumed that most of the uncertainty on MV0 comes from
the uncertainty on the distance rather than from the un-
certainty on the dereddened V0 magnitude. From the work
of Flower (1996) we derive a bolometric correction of BC
= −2.12 ± 0.16 where the uncertainty comes from the un-
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Figure 3. Observational Hydrogen and Helium line profiles

(coloured) together with their best fits (black) which were ob-
tained for Teff = 21000 K, log g = 3.4, and n(He)/n(H) = 0.15.

The arrow points to a well known (Grigsby, Morrison & Ander-

son, 1992) temperature sensitive forbidden HeII component which
was also considered during the fitting.
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certainty on Teff . This leads to Mbol = −4.64 ± 0.38 and
thus to log(L/L�) = 3.76 ± 0.15. The position of ν Eri
in the HR diagram with the previously derived Teff and
log(L/L�) estimates, is shown in Fig. 4. Another way to
estimate the luminosity is to use the strength of the Hβ
Balmer line as measured by the Strömgren β index. We ap-
plied the Hβ luminosity calibration of Balona & Shobbrook
(1984), and obtained MV0 = −3.16 ± 0.40 and therefore
Mbol = −5.28 ± 0.43 and log(L/L�) = 4.01 ± 0.17, differ-
ent but not incompatible with our value obtained with the
Hipparcos parallax.

Having two independent estimates for the luminosity,
we adopt conservatively the mean value and the union of
the error boxes: log(L/L�) = 3.89±0.29. The uncertainty of
the luminosity is therefore rather large. This will be relevant
to determine in which overtone the modes of ν Eri pulsate
(Pamyatnykh et al., 2004; Ausseloos et al., 2004, both in
preparation).

Figure 4. The estimated position and uncertainty box of ν Eri

in the HR diagram, assuming that ν Eri has a solar chemical
composition. Synthetic evolutionary tracks are drawn in thin full

lines, the zero-age and the terminal-age main sequences in thick

full lines, and the theoretical β Cephei instability strip for ` up
to 2 in a thick dashed line. Except for the evolutionary tracks,

which we computed ourselves, the sequences and the strip were

taken from Pamyatnykh (1999). They were computed with X =
0.7, Z = 0.02, a mixing length parameter α = 1.0, and without

taking into account the effects of convective core overshooting and

rotation. We refer to Pamyatnykh (1999) for more details on this
instability strip.
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4 MODE IDENTIFICATION

We used the well-known method of photometric amplitude
ratio fitting to determine the degree ` of each mode (see
e.g. Cugier, Dziembowski & Pamyatnykh (1994), and Balona
& Evers (1999)). The observational amplitude ratios (nor-
malised w.r.t. the u filter) were computed from Table 1 for
the nine independent frequencies. To compute the theoreti-
cal amplitude ratios, we used the Liège stellar evolution code
cles and the non-adiabatic pulsation code mad (Dupret,
2001) to compute the required nonadiabatic parameters,
together with Kurucz (1994) atmosphere models. First we
computed a series of models in the error box determined in
Section 3. From each of these models we then extracted all
modes with 0 6 ` 6 4 in the frequency range [5.5, 8] d−1,
except for the low-frequency mode ν10 for which we used the
frequency range [0.3, 0.55] d−1. For each of these modes, we
computed the photometric amplitude ratios, and finally we
took the average of these ratios and compared them with the
observational ratios. To have an idea about the uncertainty
of the theoretical amplitude ratios we also computed the
rms scatter which allows us to define a minimal uncertainty
region. The comparison between the theoretical and obser-
vational photometric amplitude ratios is shown in Fig. 5. We
systematically omitted the theoretical ` = 3 amplitude ra-
tios as their peculiar wavelength dependence is easily recog-
nised but not seen in the data. In addition, for ` = 3 modes
one expects very low light curve amplitudes due to a consid-
erable surface cancellation effect. From Fig. 5 we see that ν1

is clearly a radial mode and that ν2, ν3 and ν4 are compo-
nents of an ` = 1 triplet. Also ν5 is clearly an ` = 1 mode.
For ν6 and ν8 there might be some doubt between ` = 0
and ` = 1 but from theoretical frequency spectra we know
that no radial mode can be as close to the radial mode ν1

c© 0000 RAS, MNRAS 000, 000–000



8 J. De Ridder et al.

Figure 5. Observed (bullets with error bars) and theoretical uvy

amplitude ratios (lines) for ν Eri. All amplitudes are normalised
w.r.t. the u filter. Full lines are radial modes, dotted lines are

`=1 modes, dashed lines are `=2 modes, and dashed-dotted lines

are `=4 modes. The grey regions are the minimal uncertainty
regions for the theoretical amplitude ratios, computed with the

rms scatter of amplitude ratios of the different models in the

error box in the HR-diagram. The frequency identifications are
the same as in Table 1.
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as ν6 and ν8 are. This implies that ν6 and ν8 are also ` = 1
modes. No clear photometric mode identification is possible
for ν9 as its amplitude is too small. In the panel of the low-
frequency mode ν10 it can be seen that the rms scatter of
the theoretical amplitude ratios is rather large. Moreover,
this rms scatter is larger for higher degree `. The uncer-
tainty regions of the ` = 1 and ` = 2 are still disjunct, but
the uncertainty region of ` = 4 overlaps both of them. The
comparison with the observational amplitude ratios points
towards an ` = 2 or an ` = 4 mode, although an ` = 1
mode cannot be firmly excluded. As we verified, including
models with higher luminosity does not alter any of our re-
sults, so the mode identification is robust with respect to the
exact size of the error box. This is not a surprise, because
all unstable modes within the β Cephei instability strip are
grouped in well separated regions of different degrees `, as
was shown by Cugier et al. (1994).

The photometric mode identification method outlined
above features the characterisation of an “average” radial
mode, an “average” dipole mode etc. This was done by com-

puting the mean and the rms of theoretical amplitude ratios
of all relevant modes of all stellar models in the error box in
the HR diagram. We will now adopt a complementary ap-
proach where we search for the stellar model that fits best
the photometric observations (in the χ2 sense) but without
trying to fit the observed frequency values themselves. Be-
sides the photometric amplitude ratios Av/Au and Ay/Au,
we also fitted the photometric phase differences ϕv−ϕu and
ϕy − ϕu, and computed the χ2 in the usual way. Given the
errors on the photometric amplitudes and phases, the errors
on the amplitude ratios and phase differences were computed
assuming that measurements in different passbands are inde-
pendent. This time the stellar models in the error box in the
HR diagram were computed with the Warsaw-New Jersey
stellar evolution code, and the non-adiabatic eigenfunctions
with the pulsation code of Dziembowski (1977). We also al-
lowed for variations in metallicity (Z ∈ [0.015, 0.023]) but we
still neglected the effects of overshooting. The diagrams with
χ2 as a function of the degree ` for the best model are shown
in Figure 6. This model has a mass M = 9M�, a metallicity
Z = 0.016 and an effective temperature Teff = 22500 K. It
is reassuring to find essentially the same results as before.
The main mode ν1 is clearly a radial mode and modes ν2

up to ν8 and ν10 are best explained with dipole modes. The
frequency ν9 seems, however, to be best fitted with a degree
` higher than one.

One of the important differences between the two pho-
tometric mode identifications we presented, is the selection
of the modes. Figure 5 is based on both stable and unstable
modes, while Figure 6 is based on unstable modes only (ex-
cept for ν10 for which we could only find stable modes). Sta-
ble modes are usually disregarded for a photometric mode
identification, but for ν Eri we make an exception. As will
be shown by Pamyatnykh et al. (2004, in preparation) and
by Ausseloos et al. (2004, in preparation) the observed fre-
quency values strangely cannot be explained with standard
stellar models if one only considers unstable modes. We
therefore included also stable modes for Figure 5, but disre-
garded them for Figure 6 to see to what extend the results
would be altered. The important conclusion is that both ap-
proaches lead to the same mode identification. The contrast
between the fairly good fits on Figure 5 with the sometimes
considerably large χ2 values in Figure 6 (especially for ν1,
although difficult to see on the Figure) is also explained by
the selection of the modes.

For the modes ν1, · · · , ν4 and the modes ν6 and ν8, we
can be fairly confident about their degree ` as well as their
azimuthal order m. Of the remaining frequencies for which
we still need information, only ν7 is also present in the spec-
troscopic data. To gain extra information about this fre-
quency, and about the frequencies 5.51 d−1 and 5.89 d−1

we attempted a spectroscopic mode identification by mod-
elling the moments, the amplitude and phase distributions,
and the line profiles. For all three techniques we encountered
the problem of the enormous amount of computing power
required to reliably and usefully model such a large spectro-
scopic time series containing so many frequencies. Modelling
subsets of this time series did not allow to resolve the inter-
esting frequencies. One of the difficulties is that it is not
possible to identify and “remove” the modes one by one, as
the effects of the different modes on the line profiles are cou-
pled, much in contrast with the case of the photometric time
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Figure 6. χ2 diagrams for the model that fits best the observed

photometric amplitude ratios and phase differences. This model

has parameters M = 9M�, Z = 0.016 and Teff = 22500 K. For
each mode observed in the photometric time series of Handler et

al. (2004), the χ2 value is shown as a function of the degree `.

The frequency identifications are the same as in Table 1.
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series. We actually tried the one-by-one procedure with line
profile fitting by binning the line profiles with the frequency
with the highest amplitude, then identifying the mode by
fitting a one-mode model, and consequently removing the
mode by fitting a sinusoid to the line intensity variations
at each wavelength and subtracting it from the data. We
checked this procedure for the four main modes, for which
we already know the wave numbers, but the results were
rather discouraging. To fit the amplitude and phase distri-
butions, we worked initially with a model with four modes.
We used both a simple but fast line profile model with a
Gaussian intrinsic profile, as well as pulstar (De Ridder et
al., 2002) which is slower but uses more advanced Kurucz
intensity spectra. We did not succeed, however, to find a re-
liable fit to the observed amplitude and phase distributions.
For ν2, ν3, and ν4 this is mainly due to the fact that all
three modes have a phase distribution with a negative slope
(cf. Fig. 2), which would indicate that they are all prograde,
which should not be the case for a dipole triplet. From a
spectroscopic point of view, the frequencies around ν4 are
more likely explained by three peaks of an ` = 2 quintuplet
with azimuthal orders m = 0, m = −1, and m = −2. In this

sense there is a clear but unexplained discrepancy between
the spectroscopic and the photometric mode identification
for the frequencies ν2, ν3, and ν4.

5 SUMMARY AND CONCLUSIONS

We can now summarize the observational results of the 2003
multi-site and multi-technique campaign of the β Cephei
star ν Eridani.

According to the photometric mode identification, we
find in the radial velocity time series a high-amplitude ra-
dial mode ν1, a dipole triplet ν2, · · · , ν4, two close dipole
modes ν6 and ν8 likely to be part of the same triplet, and
yet another dipole mode ν5 of which we are, however, uncer-
tain whether it is a zonal or a sectoral mode. The degree ` of
the frequency ν7 could not be determined, and it is therefore
uncertain whether it belongs to the same dipole triplet of ν6

and ν8. In addition to the frequencies just mentioned, two
other significant frequency peaks (ν9 and ν10) are found in
all three observed Strömgren passbands, although we were
unable to determine uniquely their degrees `. Concerning
the low-frequency peak ν10, we explicitly checked again if
we could find it in the improved radial velocity time se-
ries, but with no positive result. This may cast some doubt
whether this frequency is indeed a genuine eigenfrequency.
The reasons why we included it nevertheless in Table 1 were
given in Paper Ia and can be summarised as follows. First,
this frequency appears in all three photometric filters. Sec-
ondly, its amplitude is far above the noise level. In fact, we
find at least 3 eigenfrequencies with lower amplitudes in the
photometry. Thirdly, in Paper Ia it is explicitly checked that
the variability at this frequency is not due to the comparison
stars µ Eri or ξ Eri. Fourthly, in the same paper it was also
checked that this frequency is not a (reasonable) combina-
tion frequency. And fifthly, the frequency is also detectable
in the datasets of the individual observatories.

For the rotationally split multiplet around 5.63 d−1

we obtained the following frequency differences: ν4 − ν3 =
0.01718(9) d−1, ν2 − ν4 = 0.01669(7) d−1. For the frequen-
cies around 6.24 d−1 we obtained the differences: ν8 − ν6 =
0.0171(5) d−1 and ν6 − ν7 = 0.021(3) d−1. The uncertainty
on the last mentioned decimal place is given between brack-
ets, and was estimated from the scatter between the differ-
ent values obtained from the different spectral lines and the
different Strömgren passbands.

The list of combination frequencies found in the pho-
tometric time series is not the same list of combination fre-
quencies found in the improved radial velocity time series,
which is in turn not exactly the same as the list of combi-
nation frequencies found in the radial velocity time series
of Paper Ib, although there is a great deal of overlap in all
three lists. The common property of all combination fre-
quencies is, however, that they never include a difference of
two independent frequencies.

In the line profiles a few other candidate frequencies
were found in the β Cephei frequency range. They are not
certain enough to be included in a seismic modelling of ν
Eri but might be used to gain extra confidence in a model if
this model turns out to be compatible with these candidate
frequencies.

c© 0000 RAS, MNRAS 000, 000–000



10 J. De Ridder et al.

ACKNOWLEDGEMENTS

We thank R. Scuflaire for the use of the stellar evolution code
cles, and M.-A. Dupret for the use of the non-adiabatic pul-
sation code mad. We thank W. Dziembowski and A. Pamy-
atnykh for the use of the Warsaw-New Jersey stellar evolu-
tion and pulsation codes. We thank M. Ausseloos for a care-
ful reading of the manuscript. JDR and MB are Postdoctoral
Fellows of the Fund for Scientific Research, Flanders. GH’s
work is supported by the Austrian Fonds zur Förderung
der wissenschaftlichen Forschung under grant R12-N02. This
study was made possible thanks to support of the Research
Fund K.U.Leuven under grant number GOA/2003/04.

REFERENCES

Aerts C., de Pauw M., Waelkens C., 1992, A&A, 266, 294

Aerts C., 1996, A&A, 314, 115

Aerts C., De Cat P., Cuypers J., Becker S.R., Mathias P., De Mey

K., Gillet D., Waelkens C., 1998, A&A, 329, 137

Aerts C. et al., 2004, MNRAS, 347, 463 (Paper Ib)

Balona L.A., Shobbrook R.R., 1984, MNRAS, 211, 375

Balona L.A., Evers E.A., 1999, MNRAS, 302, 349

Cugier H., Dziembowski W.A., Pamyatnykh A.A., 1994, A&A,

291, 143

Cuypers J., Aerts C., Buzasi D., Catanzarite J., Conrow T., Laher

R., 2002, A&A, 392, 599

De Ridder J., Dupret M.-A., Neuforge C., Aerts C., 2002, A&A,

385, 572

Dupret M.-A., 2001, A&A, 366, 166

Dziembowski W., 1977, Acta Astr., 27, 203

Fitzpatrick E.L., 1999, PASP, 111, 63

Flower P.J., 1996, ApJ, 469, 355

Glushneva I.N., Kharitonov A.V., Kniazeva L.N., Shenavrin V.I.,
1992, A&AS, 92, 1

Grigsby J.A., Morrison N.D., Anderson L.S., 1992, ApJSS, 78,
205

Handler G., Shobbrook R.R., Jerzykiewicz M., et al., 2004, MN-
RAS, 347, 454 (Paper Ia)

Hauck B., Mermilliod M., 1998, A&AS, 129, 431

Jamar C., Macau-Hercot D., Monfils A., Thompson G.I., Houzi-
aux L., Wilson R., 1976, Ultraviolet bright-star spectrophoto-

metric catalogue. A compilation of absolute spectrophotomet-

ric data obtained with the Sky Survey Telescope (S2/68) on
the European Astronomical Satellite TD-1

Kilian J., 1992, A&A, 262, 171

Künzli M., North P., Kurucz R.L., Nicolet B., 1997, A&AS, 122,

51

Kurucz R.L., 1994, Solar abundance atmospheres, cd-rom No. 19,

Smithsonian Astrophysical Observatory, Cambridge, Mass.

Leone F., Lanzafame A.C., 1998, A&A, 330, 306

Napiwotzki R., Schönberner D., Wenske V., 1993, A&A, 268, 653

Pamyatnykh A.A., 1999, Acta Astr., 49, 119

Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.,

1992, Numerical Recipes in C. The art of scientific comput-
ing, 2nd edition, Cambridge University Press

Roberts D.H., Lehar J., Dreher J.W., 1987, AJ, 93, 968

Sandage A., 1972, ApJ, 178, 1

Santolaya-Rey A.E., Puls J., Herrero A., 1997, A&A, 323, 488

Schrijvers C., Telting J.H., Aerts C., 2004, A&A, in press
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