DISCOVERY OF A NEW TYPE OF STAR

Observations

The 64 meter Parkes radiotelescope, New South Wales, Australia. Australia Telescope National Facility University of Manchaster's Jodrell Bank Observatory

Observations

≻ 800 pulsars,

> 11 Rotating Radio Transients (RRATs)

Since August 2003 all the sources (11) have been reobserved.

All have shown multiple burst, with between 4 and 229 events detected total from each object

in

The density of sources on the sky appears to be greater towards the Galactic plane (8 of 11 have $|b| < 2^{\circ}$)

McLaughlin, M. A. et al. 2006, Nature

Rotating Radio Transients

Visualisation of a neutron star, showing the magnetic field lines and the radio beam emanating from a magnetic pole

Durations:2 - 30 msTime interval between burst:4 min - 3 hPeriodicities:0.4 - 7 s
(for 10 sources)

5 of 10 P > 4 s,

NAMES OF A DESCRIPTION OF A

Rotating Radio Transients

Fypical burst intensities

Physical interpretation of Rotating Radio Transients

MODEL I – RE-ACTIVATED DEAD PULSARS

Zhang, B., Gil, J., Dyks, J. 2006, submitted to the Astrophysical Journal Letters

Physical interpretation of Rotating Radio Transients

MODEL I – RE-ACTIVATED DEAD PULSARS

Physical interpretation of Rotating Radio Transients MODEL II: REVERSED NORMAL NULLING PULSARS

PSR B1822-09

Gil, J. et al. 1994, A&A, 282, 45

Physical interpretation of Rotating Radio Transients

MODEL : PSR B1822-09

Dyks, J. et al. 2005, ApJ, 626, 45

- 1) The mechanism of coherent radio emission must allow radiation into two, opposite, direction.
- The radio waves must be able to propagate throuh inner regions of the neutron star magnetosphere with strong magnetic field.

The models implies inward radio emission in pulsar magnetosphere.

Physical interpretation of Rotating Radio Transients MODEL II: REVERSED NORMAL NULLING PULSARS

Dyks, J. et al. 2005, ApJ, 626, 45

Physical interpretation of Rotating Radio Transients MODEL II: REVERSED NORMAL NULLING PULSARS

Dyks, J. et al. 2005, ApJ, 626, 45

RRAT – observation of reversed inwarddirected pulse component

X-ray data

MODEL I (RE-ACTIVATED DEAD PULSARS) – Strong X-ray emission is not expected, except the thermal component from the cooling neutron star

MODEL II (REVERSED NORMAL NULLING PULSARS) – The X-ray emission properties (luminosity and spectrum) of RRATs should be similar to those of normal, middle-age/old pulsars

RRAT J1819-1458 was detected with *Chandra* by Reynolds et al. (2006)

Observations: 23, 25, 28 May 2005.

Spectrum:

similar to those of comparably-aged radio pulsar,

 dominated by a soft thermal component from the cooling neutron star

The data are consistent with both models !